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Abstract

Objectives The antipsychotic, hypnotic, myorelaxant and antioxidant effects of the
essential oil of Alpinia zerumbet (EOAZ) were studied.
Methods EOAZ (50, 100 and 200 mg/kg i.p.) was administered once to mice for the
determination of antipsychotic activity (evaluated by ketamine-induced hyperlocomotion),
hypnotic activity (induced by sodium pentobarbital, 40 mg/kg i.p.), motor coordination
(rotarod test), antioxidant effects (determination of lipid peroxidation and GSH levels), as
well as alterations in nitric oxide levels (determination of nitrite content).
Key findings EOAZ at doses of 100 and 200 mg/kg prevented ketamine hyperlocomotion,
as did haloperidol (0.2 mg/kg i.p). EOAZ at a dose of 200 mg/kg decreased sleep latency,
while all doses increased sleeping time. There was no effect on motor coordination. The
in-vitro antioxidant capacity of the oil caused a decrease in lipid peroxidation and increase
in GSH levels. EOAZ also prevented the decrease in nitrite content caused by oxidative
stress.
Conclusions The results suggest antipsychotic and antioxidant effects for the EOAZ that
may have promising efficacy for the treatment of schizophrenia.
Keywords Alpinia speciosa; Alpinia zerumbet; antioxidant effect; essential oil; ketamine-
induced hyperlocomotion

Introduction

Schizophrenia is a mental disorder characterized by ‘positive’ and ‘negative’ symptoms, and
by less recognized cognitive deficits in executive functions, working memory and atten-
tion.[1] N-Methyl-D-aspartate (NMDA) receptor antagonists, such as ketamine and dissocia-
tive anaesthetics, are a class of compounds that produce a transient schizophrenia-like state
in humans[2] and have been shown to produce hyperlocomotion, enhanced stereotyped
behaviour, cognitive and sensorimotor gating deficits, and impaired social interactions in
rodents.[3] Dopamine, which has long been considered important in the pathophysiology of
schizophrenia, also appears to be a critical neurotransmitter mediating the effects of NMDA
receptor antagonists.[4]

Several studies have shown that reactive oxygen species have an important role in the
pathogenesis of many diseases, especially neurological and psychiatric ones.[5] Oxidative
stress may be a common pathogenic mechanism underlying many major psychiatric disorders
as the brain is comparatively vulnerable to oxidative damage. In this context, it has already
been reported that free radicals are elevated in patients diagnosed with schizophrenia.[6]

Antipsychotic medications are also related to alterations in oxidative stress parameters.
Some studies have reported increased lipid peroxidation in rats chronically treated with
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haloperidol but not in animals treated with atypical antipsy-
chotics.[7] A recent study clearly demonstrated that oxidative
stress damage occurs in patients with schizophrenia and one
possible therapeutic solution is to use antioxidants.[8] For
example, the association of Ginkgo biloba extract with clas-
sical haloperidol treatment results in better scores in the Scale
for the Assessment of Positive and Negative Symptoms,[9] as
well as enhanced antipsychotic efficacy and reduced extra-
pyramidal side-effects.[10] Also, the use of essential poly-
unsaturated fatty acids has been suggested, considering
the dysregulation of membrane phospholipid metabolism
throughout the body in patients with schizophrenia.[11]

Based on the benefits of Ginkgo biloba extract in the treat-
ment of schizophrenia, the discovery of other plants with
similar or greater activity may contribute to the clinical
outcome of schizophrenia. Alpinia zerumbet (Pers.) B. L.
Burtt from the Zingiberaceae family is usually cited in the
literature with the binomial Alpinia speciosa K. Schum. This
species is popularly known in Brazil as ‘colônia’ and it is used
in traditional medicine and religious rituals. The major con-
stituents present in its roots, leaves and stems are sesquiter-
penoids and diterpenoids.[12]

Some effects of the essential oil of A. zerumbet leaves
(EOAZ) have already been determined in animals, including
arterial hypotension effects,[13] antinociceptive effects, prob-
ably involving the participation of opiate receptors,[14] and
myorelaxant and antispasmodic effects.[15]

In phytotherapy, A. zerumbet is used to treat neuropsychi-
atric symptoms such as depression, stress and anxiety, but it
is only recently that the central nervous system (CNS) effects
of the essential oil from the plant leaves have been studied.
Our research group showed a possible involvement of dopam-
inergic neurotransmission in the central actions of EOAZ,
since a decrease in locomotor activity and attenuation of
apomorphine-induced stereotypy behaviour were observed in
mice treated with the essential oil at intraperitoneal doses of
50 and 100 mg/kg.[16] Inhalational administration of EOAZ
(0.087 and 8.7 ppm) showed an anxiolytic-like activity in
mice.[17,18]

Antioxidant compounds isolated from the rhizomes of
A. zerumbet have shown greater activity than Trolox.[19]

However, there is no evidence in the literature for the antioxi-
dant activity of A. zerumbet leaves.

The EOAZ has possible antipsychotic effects as evidenced
by the attenuation of apomorphine-induced stereotypy, a phar-
macological model of schizophrenia that resembles mainly
positive symptoms.[17] In the present study, we aimed to
confirm our preliminary findings studying the effects of the
EOAZ on ketamine-induced hyperlocomotion. This schizo-
phrenia model has widespread acceptance as it may simulate
other dimensions of the disorder, namely cognitive and nega-
tive symptoms.[20] Furthermore, we investigated possible CNS
antioxidant effects of EOAZ, which might partly explain its
antipsychotic activity.

Methods

Animals
Male Swiss mice (20–30 g) were housed in a temperature-
controlled room (25 � 1°C) under standard laboratory condi-

tions, with free access to food and water and a 12-h light/dark
cycle (lights on at 0630 h). Procedures were conducted in
accordance with the Brazilian College of Animal Experimen-
tation (COBEA) guidelines for the care and use of laboratory
animals, as well as the Guide for the Care and Use of Labo-
ratory Animals published by the National Institutes of Health
(Betesda, MD, USA), in compliance with international laws
and policies. The study was approved by the University
Animal Ethics Committee (protocol no. 45/10).

Plant material
The essential oil was extracted from leaves of A. zerumbet
collected in the Medicinal Plants Garden of the Laboratory of
Natural Products of the Federal University of Ceará, Ceará
State, Brazil, during December 2009. A voucher specimen of
A. zerumbet was deposited at the Herbarium Prisco Bezerra
(no. 10858), as identified by Dr Edson Paula Nunes and Dr
Peres Martins. The isolation of the essential oil was carried
out at the Department of Organic and Inorganic Chemistry of
the Federal University of Ceará, according to the method
described elsewhere.[21] Briefly, freshly chopped plant leaves
were placed in a glass flask connected at one end to a glass
vessel with water and at the other end to a water-cooled
condenser. The water was heated to boiling point, and the
steam percolated through the chopped plant leaves and col-
lected in the condenser. After condensation, the watery phase
with its solutes, termed the ‘hydrolate’, was separated from an
oily phase; the essential oil, which, when rediluted in water is
termed the ‘pseudo-hydrolate’. The composition of the EOAZ
was determined by gas chromatography and mass spectrom-
etry: 1,8-cineole, 20.57%; terpinen-4-ol, 19.39%; g-terpinene,
15.08%; sabinene, 9.68%; r-cimene, 8.54%; a-tujene, 6.35%;
a-terpinene, 3.88%; b-pinene, 3.02%; limonene, 2.64%;
a-pinene, 2.38%; terpinolene, 1.93%; b-mircene, 1.20%;
trans-cariophilene, 1.11%; a-terpineol, 0.86%; not identified,
3.35%.

Drugs and administration schedule
The essential oil was emulsified with 2% Tween 80 (Sigma, St
Louis, MO, USA) in distilled water. Ketamine (Sigma) was
dissolved in saline. All solutions were freshly prepared before
injection. Animals, 6–10 per group, were injected once with
EOAZ (50, 100 and 200 mg/kg i.p.) or vehicle 30 min before
the test, while ketamine (20 mg/kg i.p.) or saline were applied
immediately before the beginning of behavioural tests.
Haloperidol was used as a standard antipsychotic drug. For
the ketamine-induced hyperlocomotion test the experimental
groups were divided as follows: group 1, vehicle + saline
(control); group 2, vehicle + ketamine; group 3, EOAZ
50 mg/kg i.p. + saline; group 4, EOAZ 100 mg/kg
i.p. + saline; group 5, EOAZ 200 mg/kg i.p. + saline; group 6,
haloperidol 0.2 mg/kg i.p. + saline; group 7, EOAZ 50 mg/kg
i.p. + ketamine; group 8, EOAZ 100 mg/kg i.p. + ketamine;
group 9, EOAZ 200 mg/kg i.p. + ketamine; group 10, halo-
peridol 0.2 mg/kg i.p. + ketamine.

Behavioural tests
Ketamine-induced hyperlocomotion
The behavioural effects produced by drug treatments were
tested in an open field made of acrylic (transparent walls and
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black floor, 30 cm ¥ 30 cm ¥ 20 cm) divided into nine squares
of equal area. The testing room was illuminated with three
25-W bulbs placed around the open field and had a constant
temperature of 25 � 1°C. Immediately after the second injec-
tion (20 mg/kg ketamine or saline), the mice were placed
in the centre of the open field and locomotor activity was
recorded during 20 min. The test was performed during the
light period between 0800 and 1200 h. After determination of
locomotor activity, the mice that received only the EOAZ
were placed on a rotarod apparatus to determine the effects of
the essential oil on motor coordination.

Pentobarbital sleeping time
At 30 min after intraperitoneal administration of EOAZ (50,
100 and 200 mg/kg) or vehicle, all groups received sodium
pentobarbital (40 mg/kg i.p.). The time between the injection
to the loss of the righting reflex was recorded as the sleep
latency, and the time elapsed between the loss and voluntary
recovery of the righting reflex was recorded as the sleeping
time.[22] Diazepam at a dose of 1 mg/kg was used as a standard
sedative drug.

Rotarod test
After determination of locomotor activity mice treated
with EOAZ (50, 100 and 200 mg/kg) and controls were
placed with their four paws on a 2.5-cm diameter bar, 25 cm
above the floor and the time of permanence on the bar was
measured during 1 min for each animal. The rotating speed
was 15 rev/min.[23]

In-vitro antioxidant activity
In-vitro antioxidant activity was assessed by measuring the
inhibition of spontaneous lipoperoxidation of homogenates
from the brains of mice (without cerebellum) in the presence
of different concentrations of EOAZ equivalent to 25, 50 and
100 mg/ml. Vitamin E (100 mg/ml) used as a standard antioxi-
dant. After 1 h incubation of previously frozen (-20°C for
24 h) brain homogenate at 37°C, the antioxidant activity was
calculated for each concentration of the oil. The samples
submitted to oxidative stress (i.e. frozen and thawed at 37°C)
were used as positive controls. The samples frozen and not
incubated for 1 h at 37°C were used as negative controls.

The same homogenates were used to assess the in-vitro
effects of the EOAZ on nitric oxide (NO) production assessed
by determination of nitrite levels and reduced glutathione
(GSH) to evaluate defences against oxidative stress,[24] accord-
ing to the following procedures.

Determination of lipid peroxidation
Lipid peroxide formation was analysed by measuring the
thiobarbituric-acid reacting substances (TBARS) in the
homogenates. The samples were briefly mixed with 50 mm
potassium phosphate monobasic buffer (pH 7.4), and 63 mL of
the homogenate was mixed with 100 mL of 35% perchloric
acid. The samples were then centrifuged (3350g/10 min) and
150 mL of the supernatants was retrieved and mixed with
50 mL of thiobarbituric acid 1.2%, and heated in a boiling
water bath for 30 min. After cooling, the lipid peroxidation

was determined by absorbance at 535 nm and was expressed
as mmol MDA/g tissue.

Determination of GSH levels
GSH levels were evaluated to estimate endogenous defences
against oxidative stress. The method was based on Ellman’s
reagent (DTNB) reaction with free thiol groups. Striatum
homogenates 10% (w/v) in EDTA 0.02 M were added to
a 50% trichloroacetic acid solution. After centrifugation
(1200g/15 min), the supernatant of homogenate was collected
and the production levels of GSH were determined as
described elsewhere.[25] Briefly, the samples were mixed with
0.4 M Tris-HCl buffer (pH 8.9) and 0.01 M DTNB. The GSH
level was determined by the absorbance at 412 nm, calculated
based on a standard glutathione curve and expressed as ng of
GSH/g wet tissue.

Nitrite determination
For the assessment of nitrite, derived from NO, 100 ml
of Griess reagent (1% sulfanilamide in 1% H3PO4/0.1%
N-(1-naphthyl)-ethylenediamine dihydrochloride/1% H3PO4/
distilled water, 1 : 1 : 1 : 1) was added to 100 ml of brain
homogenates or to 100 ml of NaNO2 at concentrations ranging
from 0.75 to 100 mM (standard curve). For the blanks, 100 ml
of the Griess reagent was added to 100 ml of homogenate. The
absorbance was measured with a plate reader at 560 nm. The
standard curve was used for determination of nitrite concen-
trations in samples.[26]

Statistical analysis
All the results are expressed as mean � SEM. Treated groups
were compared with controls and differences were estimated
by analysis of variance followed by Student-Newman-Keuls
post-hoc test for multiple comparisons. In all comparisons,
P < 0.05 was considered to indicate statistical significance.

Results

Inhibition of ketamine-induced hyperlocomotion
by EOAZ
As expected, the animals treated with ketamine (20 mg/kg
i.p.) showed an increase of 181% in the number of cross-
ings as compared with control animals (F(9,67) = 19.48,
P < 0.001). EOAZ (200 mg/kg) and haloperidol (0.2 mg/kg)
alone decreased locomotor activity (F(9,67) = 19.48,
P < 0.05) as compared with controls. Pretreatment with
EOAZ (100 and 200 mg/kg) and haloperidol (0.2 mg/kg)
prevented ketamine-induced hyperlocomotion (F(9,67) =
19.48, P < 0.001) (Figure 1).

Effects of EOAZ on sleeping time
According to Figure 2a EOAZ at the dose of 200 mg/kg
decreased sleeping latency by 40%, an effect similar to that
presented by diazepam (F(4,33) = 8.726, P < 0.01).

EOAZ at all doses studied increased the sleeping duration
in a dose-dependent manner. The augmentation of sleeping
duration seen at the dose of 200 mg/kg was 50% higher than
that registered with diazepam (control vs EOAZ 50 mg/kg and
EOAZ 100 mg/kg vs EOAZ 200 mg/kg (F(4,31) = 18.35,
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P < 0.05); control vs EOAZ 100 mg/kg and control vs EOAZ
200 mg/kg (F(4,31) = 18.35, P < 0.001); control vs diazepam
(F(4,31) = 18.35, P < 0.01)) (Figure 2b).

Effects of EOAZ on motor coordination
As shown in Figure 3 none of the EOAZ doses used (50,
100 and 200 mg/kg) altered motor coordination in mice
(F(3,35) = 0.06867, not significant).

In-vitro antioxidant activity
Figure 4 shows that the MDA content was increased by 83%
in the positive control compared with the negative control

(F(5,35) = 18.58, P < 0.001). EOAZ at all concentrations
studied (25, 50 and 100 mg/ml), significantly decreased lipid
peroxidation by approximately 80% as compared with the
positive control, and this effect was comparable with that
presented by vitamin E which decreased MDA content by
84% compared with the positive control (F(5,35) = 18.58,
P < 0.001).

In-vitro administration of EOAZ at a concentration of 50
and 100 mg/ml significantly increased GSH levels as com-
pared with the positive control which decreased this para-
meter in relation to the negative control (F(5,34) = 5.667,
P < 0.05). Vitamin E also increased the GSH content as com-
pared with the positive and negative controls (F(5,34) =
5.667, P < 0.001) (Figure 5).

As can be seen in Figure 6, under our experimental
conditions, the homogenates submitted to oxidative stress
(positive control) had decreased nitrite content as compared
with the negative control, while EOAZ at all doses studied
and vitamin E returned this parameter to negative control
levels (positive control vs negative control and positive
control vs EOAZ 25 mg/ml (F(5,42) = 4.043, P < 0.05); posi-
tive control vs EOAZ 50 mg/ml, positive control vs EOAZ
100 mg/ml and positive control vs vitamin E (F(5,42) =
4.043, P < 0.01)).
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Figure 3 Effect of EOAZ on motor coordination. Groups of mice
received vehicle and the essential oil of Alpinia zerumbet (EOAZ 50, 100
and 200 mg/kg). The parameter analysed was the time of permanence on
the bar in the rotarod test. The results are presented as means � SEM
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Figure 4 In-vitro effect of EOAZ on brain lipid peroxidation. Bars show malondialdehyde (MDA) levels � SEM from whole-brain homogenates
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Figure 6 In-vitro effect of EOAZ on brain nitrite content. The nitrite content was determined after in-vitro administration of the essential oil from
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Discussion

Pretreatment with EOAZ at concentrations of 100 and
200 mg/kg prevented ketamine-induced behavioural alter-
ations. Drugs such as ketamine, phencyclidine and other
similarly acting psychotomimetic compounds induced their
unique behavioural effects by blocking neurotransmission at
NMDA-type glutamate receptors.[27] The ability of these com-
pounds to transiently reproduce key symptoms of schizophre-
nia by blocking NMDA receptors led to the concept that
symptoms in schizophrenia may reflect underlying dysfunc-
tion or dysregulation of NMDA receptor-mediated neu-
rotransmission. This model has been increasingly adopted and
is now considered to be one of the useful models for both
aetiological conceptualization of schizophrenia and new treat-
ment development,[28] since the antipsychotics in current use
best treat positive symptoms, while negative and cognitive
symptoms remain a problem.

NMDA dysfunction may also account for both the
impaired dopaminergic regulation and the impaired GABAer-
gic neurotransmission that has been documented in schizo-
phrenia. Deficits similar to those observed in schizophrenia
are observed in normal volunteers undergoing ketamine infu-
sion,[29] and in rodents treated subchronically[30] with NMDA
receptor antagonists, suggesting that dopaminergic dysregu-
lation in schizophrenia may be downstream of a primary
deficit in NMDA function.

In a recent study, we showed that the intraperitoneal
administration of EOAZ at doses of 50 and 100 mg/kg pre-
vented the behaviours induced by apomorphine administra-
tion (climbing and sniffing) in a dose-dependent manner,
strongly indicating the participation of dopamine receptors
in the EOAZ mechanism of action and suggesting an antip-
sychotic activity (possible by a blockage of dopaminergic
receptors), since it was effective in the prevention of
apomorphine-induced stereotypy.[16]

The pentobarbital sleeping time test was used to confirm
the depressant effects of the essential oil. A decrease in sleep
latency and increase in sleeping time are classically related to
CNS depressant drugs.[31] The present results showed that
EOAZ significantly decreased the sleep latency (at a dose of
200 mg/kg), and prolonged sleeping time at all doses studied,
suggesting a possible sedative effect of this oil. Previous
research showed that oral administration of the hydroalco-
holic extract of A. zerumbet to mice produced a prolongation
of sleeping time over the dose range of 500–1000 mg/kg.[32] It
is important to note that all antipsychotic medications are
associated with an increased likelihood of sedation.[33] Atypi-
cal antipsychotics such as olanzapine in placebo-controlled
trials induce sedation as one of the most common adverse
events.[34] The intraperitoneal administration of haloperidol
and pimozide (2.5 and 5.0 mg/kg) 10 min before pentobar-
bital sodium (60 mg/kg) injection in rats significantly
increased the onset time and duration of sleep.[35]

A deficit in motor coordination would very likely affect
performance in the behavioural tests. To test this, we deter-
mined the effects of EOAZ in the rotarod test, a classic animal
model used to evaluate peripheral neuromuscular blockage.
Our findings showed that the oil had no significant effect on
motor coordination of the mice in this test. Benzodiazepine

compounds show anxiolytic, sedative and muscle relaxation
effects. These effects could involve facilitation by some
inhibitory systems such as the GABAergic system. EOAZ did
not show anxiolytic effects[16] or, as seen in the present study,
muscle relaxation. Based on this, we can postulate that this oil
does not act as a benzodiazepine but rather its effects are
closer to those produced by antipsychotic drugs.

Under our experimental conditions the in-vitro administra-
tion of EOAZ was able to prevent lipid peroxidation, increase
GSH levels and normalize nitrite content in whole-brain
homogenates, thus showing an antioxidant effect. The brain
is susceptible to oxidative damage since it is under very
high oxygen tension and highly enriched in reactive oxygen
species susceptible proteins, lipids and poor DNA repair.
Indeed, an altered redox state is evident in some psycho-
pathologies such as bipolar disorder,[36] anxiety and depres-
sion,[37] and schizophrenia.[38] In schizophrenia, a reduction in
both reduced and oxidized glutathione, reduced superoxide
dismutase, reduced catalase and glutathione peroxidase, as
well as increased lipid peroxidation has been reported.[5]

Since oxidative stress is a possible mechanism involved in
schizophrenia, the adjuvant use of antioxidants in the treat-
ment of this mental illness may be very useful. Schizophrenia
affects approximately one in a 100 individuals, of which about
one-third respond fully to treatment, one-third incompletely
and one-third not at all.[39] Part of the problem with the inad-
equate response to therapy may be due to the fact that drugs in
current use were not designed to treat GSH deficiency[40] or
oxidative stress, and the adjunctive use of antioxidants is not
yet standard practice.[39]

Aberrations in NO signalling have been associated with
schizophrenia in both clinical studies and animal models
of the disorder.[41,42] A role for NO dysregulation is supported
by recent findings showing increases in NO levels and
NO-dependent increases in cGMP signalling in the prefrontal
cortex following phencyclidine administration in rodents.[43]

In our study, EOAZ was able to prevent the alteration induced
by oxidative stress in whole-brain homogenates, suggesting
that this effect can also contribute to its beneficial effects in
animal models of schizophrenia. It is important to mention
that the oil did not increase nitrite content but rather brought
it back to normal levels (negative control levels).

The main constituents of EOAZ (1,8-cineole and terpinen-
4-ol) have already been studied in relation to some biological
activities. 1,8-Cineole, also known as eucalyptol or cajeputol,
is a monoterpene ether, present in many plant essential oils.
It has been reported to alter neural firing in certain areas of
the olfactory lobe, and to have hypotensive, smooth muscle
relaxant[44,45] and antinociceptive activity.[46] Terpinen-4-ol, a
monoterpenoid alcohol and component of the essential oils of
several aromatic plants, showed CNS depressant and anticon-
vulsant activity in mice.[47] Thus, some neuroactive constitu-
ents of the EOAZ might account for the antipsychotic and
antioxidant effects described in the present study and may
open new perspectives for further investigation.

Conclusions

This study demonstrated the antipsychotic activity of
EOAZ using a pharmacological model of schizophrenia
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(ketamine-induced hyperlocomotion) and also showed a
sedative effect of the oil. This study corroborates our previous
research.[16] EOAZ presented an important antioxidant effect
in vitro, suggesting that it may improve the treatment of
mental illness such as schizophrenia. Further studies are
needed to determine if the antipsychotic effect of this oil
involves dopaminergic and/or serotonergic neurotransmission
since this is a common mechanism of antipsychotic drugs.
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